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Abstract—A model is presented for approximating load-diffusion from axially loaded fibers em-
bedded in elastic matrices. The fundamental elastostatic solutions used are for a point force and a
point dilatation in either a fully-infinite or semi-infinite space. Tangential tractions across the fiber—
matrix interface are included explicitly in the analysis. The model is applied to the three-dimen-
sional analogs of Melan's first problem and Reissner’s problem and comparisons are made with
exact results in the case of the former to help establish the validity of the model.

I. INTRODUCTION

The ability to analyze load-transfer in fiber-matrix systems which are illustrative of those
that exist in fiber-reinforced materials is fundamental to the study of how such materials
behave in application. Our ability at present, however, to rigorously solve such problems
in the realm of three-dimensional elasticity is limited to a few isolated results involving
infinite fibers bonded along their entire length to fully-infinite matrices. Two noteworthy
examples are the load-diffusion from an axially loaded fiber (Muki and Sternberg, 1969)
and the load-absorption by a broken fiber in a remotely stressed medium (Ford, 1973). A
much more interesting class of fiber-matrix system involves fibers embedded in semi-infinite
half-spaces. This type of problem is pertinent to the study of how fiber-bridging in the wake
of crack advance serves to isolate the crack tip from applied far-field loadings and thus
increases the fracture toughness of a material. The analytic complexity of such problems,
however, discourages any attempt at a rigorous solution, What is being proposed in this
paper is a model for approximating load-diffusion in these systems.

One such model has already been developed by Muki and Sternberg (1970) and used
to study such problems as load-transfer to a half-space from a partially embedded axially
loaded rod and load-absorption by a semi-infinite fiber in a remotely stressed, fully-infinite
mratrix (Sternberg, 1970). Muki and Sternberg’s model replaces the fiber-matrix system of
the problem with an extended matrix occupying the volume originally containing both the
fiber and the matrix and possessing the sume elastic properties as the original matrix. This
extended matrix is in turn reinforced by a “fictitious stiffener” whose modulus of elasticity
when taken in sum with that of the extended matrix is equal to that of the original fiber.
This stiffener is tuken to be a one-dimensional clastic continuum bonded to the extended
matrix in such a way that the axial strain in the stiffener is equal to the average extensional
strain of the extended matrix in the volume occupied by and in the direction of the original
fiber. Poisson’s effect in the stiffener, and therefore in the fiber, is not taken into account.
Finally,“bond-forces™ are regarded as body forces uniformly distributed over disks per-
pendicular to the axis of the fiber and the load carried by the original fiber is equated with
the sum of the stitfener load and the resuitant load carried by the extended matrix in the
bonded region.

A variation of Muki and Sternberg’s model was used by Pak (1989) in a study of
flexure of partially embedded fibers under lateral loads. The concept of a “*fictitious stiffener”
replacing the original fiber and treated as a one-dimensional elastic continuum was again
employed. In this case, however, lateral displacement of the stiffener was taken to equal
lateral displacement in the extended matrix along the centroidal axis of the original fiber
and Bernoulli-Euler bending beam theory was used to describe the behavior of the stiffener.
Body-force field distributions corresponding to laterally-loaded rigid disks embedded in the
matrix along the axis of the fiber were adopted as the *“bond-forces”.
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[n the model proposed here the effect of the fiber on the matrix is assumed to be
approximated by unknown distributions of axial forces and dilatations in an elastic space
along the line where the fiber axis would lie. Mathematically the elastic field in the matrix
1s represented in terms of integrals with kernel functions corresponding to concentrated
loads and dilatations. The fiber is modeled by a one-dimensional rod theory in which
Poisson expansions and contractions are allowed. The two unknown distributions are
determined by enforcing fiber equilibrium and continuity of tractions and displacements at
the fiber-matrix interface leading mathematically to a pair of coupled integral equations.
This model would seem to be conceptually “clean™; however, there is a difficulty. A
concentrated axial force applied to the (model) fiber necessarily produces a discontinuity
in axial strain. On the other hand, any distribution whatever of axial forces and dilatations
according to the model produces continuous axial strains in the matrix at the fiber—
matrix interface. This fundamental inconsistency is avoided by introducing an approximate
expression for the axial strain in the matrix which has the proper discontinuity but which
differs from the exact expression over a distance the order of a fiber radius. It is difficuit to
give a rigorous assessment of the errors involved in the approximate theory but it is thought
to be accurate except within distances the order of a fiber radius from concentrated loads
or other discontinuities. In contrast to the model used by Muki and Sternberg, this approach
treats the transfer of load between the fiber and matrix in a manner which explicitly
includes tangential tractions across the interface and therefore affords one more fiexibility in
examining systems where interface conditions are an issue. Furthermore, the fundamental
elastostatic solutions in application in this model are those for a point force and a point
dilatation. These solutions are much less cumbersome than the disk of uniform loading (or
laterally-loaded rigid disk) required in Muki and Sternberg’s model. These factors make
the method presented below attractive for modeling a varicty of fiber-matrix systems of
interest to those studying fiber-reinforced materials.

2. LOAD-TRANSFER TO AN ELASTIC MEDIUM FROM AN INFINITE AXIALLY LOADED
FIBER

Perhaps the best way to present this model is to demonstrate its application with a
simple problem, in this case the three-dimensional analog of Meclan’s first problem from
two-dimensional elasticity. An infinite cylindrical fiber, with a circular cross-section of
radius a, is ideally bonded along its entire length to a fully-infinite matrix and subjected to
a concentrated load F (see Fig. 1). The model is used to solve for the resultant axial load
carried by the fiber. A cylindrical coordinate system is defined as shown in Fig. | with the
z-axis coincident with the centroidal axis of the fiber and the applied load at the origin in
the negative z-direction. Both the fiber and the matrix are homogeneous and isotropic,
lincar elastic solids with Young's modulus and Poisson’s ratio taken respectively to be E;
and v, for the fiber and E,, and v,, for the matrix.

Consider first the fiber of the problem. In this model the fiber is approximated as an
axisymmetric clastic rod with a uniform axial stress a. This means it is assumed that g, = ¢,,
€., 05 = 0,, and o are functions of = only and shear strains are ignored. Under the rod theory
approximation, constitutive relations for the fiber reduce to

g = Eje.+2vs0, )
and
Ereg+viEre. —(1 =2v/)(1 +v/)a, = 0. (2)

The fiber, taken as a free body, is subject to a concentrated load Fat z =0 and to
bonding tractions acting at r = a between the fiber and the matrix. These bonding tractions,
along with their equivalent matrix stresses, are a distributed shear stress, t = t72(a, ), and
a self-equilibrating “pressure”, ¢, = ¢7"(a. =). Throughout the remainder of this paper, field
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Fig. 1. Infinite cylindrical fiber embedded in an infinite elastic matrix.

quantities in the matrix will be denoted by superscribed ms. The rod is in equilibrium if,
forall z,

sgn (2) 3

N1

naza+2naJ- 1dz’ =

Q

where the signum function sgn (z) = z/|z|. This equation might of course appear in different
forms depending on the lower limit used in the integral of the shear stress distribution. As
written here, however, (3) reflects the natural symmetry of the problem. In what follows,
(2) and (3) are taken to be the governing equations. Utilizing (1), the governing equations
contain three fiber quantities which need to be related to the approximate elastic field in
the matrix described below, namely ¢,, ¢., and o,.

As already stated, the elastic field in the matrix acted upon by the loaded fiber is
approximated by the reaction in a fully-infinite elastic space due to a concentrated force F
acting at the origin in the negative z-direction along with distributions along the z-axis of
point forces and point dilatations, p(z) and ¢(z) respectively, where the point force dis-
tribution must be self-equilibrating. Papkovich stress functions, ¢ and ¢, will be used to
express this approximate elastic field. In a cylindrical coordinate system with rotational
symmetry the expressions for radial and axial displacements are

1 d
u(r,2) = 2 S V() +6(0,2)] @
and
1 0 0
w(r.z) = —Z_—r [: 3 vr.z2)—G-4av(r. )+ 3 o(r,z ] . 3

Thus, using the Kelvin solution for a concentrated load in an infinite elastic space along
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with that for a point dilatation (Sokolnikoff. 1956). the approximate elastic field can be
expressed as

1 “ l . iy e
Y(r.z) = 8x(l _‘,M)J‘_I p(r==0) [FO() +p(D]dS
P — f SO ijt L 0 e
T —87((1-»',,,) _xp(r.:——C)ps *7 4 _Ip(r‘:—g)q5 :

where p(r.2) = \/'rz-f-:: and J({) is the Dirac function. In this expression the point forces
are of strength p(z) and act in the negative z-direction, while the point dilatations in
expansion are of magnitude [(1 +v,,)/E, ]g(2). Using these stress functions. expressions for
all field variables in the matrix can be derived in the form of infinite integrals of the unknown
distributions multiplied by some known difference kernel, e.g. in the form

e'(rz) = J {A4(r 2= OIF Q) +p(O]+ A2 (r. 2= Dq(0) } 4 M

-

where the kernel functions 4, and 4, are real analytic functions of z for r > 0 and so,
consequently, is 7. For those matrix quantities which shall be used below in terms of the
Papkovich stress functions, see the Appendix. For reasons discussed in the literature (Muki
and Sternberg, 1969) having to do with the singular nature of (7) in the limitas r = 0 it is
impossible to model the fiber as an elastic line in this problem.

The fiber quantitics €, and o, in eqns (2) and (3) are related to matrix quantities at
r = a by continuity of tractions and displacecments, so that

|
ey = W,z (8)
a

and
o, =0, (d,:z C)]

where we have shown that cach of these quantities is analytic and must, therefore, be
continuous. On the other hand, on physical grounds, and from (3), the axial fiber stress o
must certainly be discontinuous. Then, assuming that o, is continuous, it follows from (1)
that ¢, is discontinuous. The diflicullty is that the secemingly most natural expression for ¢.,
that given by

g =e"a,z) (10)

in the form (7). cannot be discontinuous and so is suitable for use only in eqn (2). Some
alternative cxpression for g, in terms of matrix field quantitics must be adopted for eqn (3).

As anindication that some alternative expression for ¢, involving a discontinuity would
not be unreasonable, consider the following. Let £ be the average, over a disk of radius ¢
centered on the z-axis. of the strains in the matrix £*™(r, 2 —{) where quantitics with a
superscript asterisk are due to a unit concentrated axial load at (r,2) = (0, (). Calculation
leads to an expression of the form

&¥ = Csgn(z—{) +regular terms. (1)
Except in the range [z —(| = O(a) this expression agrees rather closely with ¢*"(a,z—{)

for the same load. However, this expression is not suitable for the following reason. From
(1) it follows that the “jump’ As. in strain be related to the jumping.atz = { by
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i 1
AS: = ‘E“,‘;AU: = ;az—Ef

(for the supposed unit load). The constant Cin (11) does not meet this requirement. Instead,
a form relating axial strain in the fiber to matrix quantities was adopted that combined
continuity of displacements (10) with a term containing the proper discontinuity and
decaying rapidly outside the range |z —{| = O(a). For a unit axial load at (0,{)

1 :=¢
e*= M[sgn(;-@—-erf (Tg)jl+z;””(a.:—g'). (12)

A somewhat different expression will be used in the half-space problem to follow. There is
certainly nothing unique about the expression (12) which gives finally an expression for
axial strain to be used in eqns (1) and (3). Final numerical results, which agree very well
with those in the literature, seem to indicate that such results are quite insensitive to the
precise definition of e,

Using the expressions established above to relate the unknown fiber quantities to the
elastic field given by (6), and non-dimensionalizing with @ and F, the governing equations
(2) and (3) can be rewritten as a pair of coupled integral equations in terms of the unknown
distributions p(z) and ¢q(z);

ZJ; P(C)dci-J MuE=0p@Q+T12(E=04O]dl = ~T0() (13)

J“ (C2iz=0p@) + 22z =g d] = ~T,(2) (14

where the kernel functions Iy (o, ff = 1,2) are real analytic functions (sce the Appendix).
Note that this system could be solved analytically using Fourier transform methods and
the convolution thecorem. However, of concern here is the establishment of methodology
for more complicated load-diffusion problems.

The system (13) and (14) is first reduced to a set of discrete linear equations. Using
the symmetry of the distributions, p(z) even and ¢{(z) odd, the infinitc integrals can be
rewritten in semi-infinite form, though without difference kernels, Truncating infinite limits
at appropriately large values and approximating the integrals with a trapezoidal quadrature
scheme, the two equations are then enforced at the discrete quadrature points in accordance
with the Nystrom method (Delves and Mohamed, 1985). Though not truly a system of first
kind integral equations, (13) and (i4) unfortunately retain some of the ill-posed behavior
inherent in all such equations. This is dealt with by using singular value decomposition to
solve the set of linear equations, filtering out small length scale instabilitics with some
unavoidable degradation of the results for small =. Under the assumptions of this modecl,
especially that the fiber behaves as an elastic rod and has axial strain given by (12), one
would not expect high accuracy near the applied load in any event. The use of singular
value decomposition in the solution of such problems is well understood and more detailed
discussion can be found in the literature (Barakat and Buder, 1979 ; Press et al., 1986). The
necessary numerical routines for this method can be found in both the literature and in
commercial software libraries.

Axial load in the fiber is determined by eqn (1) [or equivalently eqn (3)]. Rewriting
(1) in non-dimensional form with the now known distributions p(z) and ¢(z) gives

o;(j) - A|(2)+J‘_: A z=0p)+Ax(z~q(]dC (15)

where g, = F/2rna®, A, is discontinuous at z = 0, and A, is a real analytic function (see the

SAS 28:8-H
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Fig. 2. Load-difTusion results in the three-dimensional analog of Melan's first problem for the model
presented in this paper and Muki and Sternberg’s exact and approximate formulations.

Appendix). The bonding tractions across the fiber-matrix interface, t and a,, can similarly
be determined. Comparison between the results obtained with this model and those from
an exact elastostatic solution developed by Muki and Sternberg (1969). along with the
results of their approximate model, are shown in Figs 2-4. The results for ¢ very closely
approximatc the exact solution and can be shown to have the same asymptotic form (Muki
and Sternberg, 1969) in the highest order term as {z| — oo, i.c.

o) _ Ef,_ v (1=2v)) ]Sgn(:) =
Uo—(l+vM)Em[! (Vv )EE, +(1+v,)(1=2v)) | 2P +oz). (16)

The ratio of Young's moduli between the fiber and matrix is seen to be much more of an
influential factor than either of the Poisson’s ratios. A comparison of ¢, in Fig. 3 points to
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Fig. 3. Normal stress across the fiber-matrix interface in the three-dimensional analog of Melan's
first problem for the model presented in this paper and the exact solution.
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Fig. 4. Shear stress across the fiber-matrix intcrface in the three-dimensional analog of Melan's first
problem for the model presented in this paper and the exact solution.

a shortcoming of the model which gives a result that is incorrectly continuous, though it
approaches the exact solution asymptotically for large z. However, consider for a moment
the exact solution for the problem in which a point force acts at the centroidal axis of the
fiber. In that casc all ficld variables (4, in particular) would be continuous everywhere on
the fiber-matrix interface, more in agreement with the present model. In any case, the model
is an approximation and cannot be expected to predict accurately details near concentrated
loads or other singularitics. Figure 4 shows that while the exact solution predicts a log-
arithmic singularity in 7 at = = 0, the everywhere bounded approximate solution is quite
accurate elsewhere. Any approximate model (including that of Muki and Sternberg) is most
likely to be inaccurate near singularitics. This does not vitiate their usefulness in fracture
mechanics applications where path (or surface) independent integrals play a decisive role.

3. LOAD-TRANSFER TO AN ELASTIC HALF-SPACE FROM A SEMI-INFINITE AXIALLY
LOADED FIBER

Typically of greater interest in the study of fiber-reinforced materials are problems of
load-difTusion from fibers in semi-infinite half-spaces. The problem of this type solved here
is the three-dimensional analog of Reissner’s problem from two-dimensional elasticity. A
semi-infinite cylindrical fiber, with a circular cross-section of radius a, is ideally bonded to
a semi-infinite matrix. The fiber is normal to the free-surface of the matrix and is subjected
to a concentrated load Faway from the matrix (sce Fig. 5). A cylindrical coordinate system
is defined as shown in Fig. 5 with the z-axis coincident with the centroidal axis of the fiber
and the matrix occupying the space = > 0. Both the fiber and the matrix are homogeneous
and isotropic, linear elastic solids with Young's modulus and Poisson’s ratio taken respec-
tively to be £, and v, for the fiber and E,, and v,, for the matrix.

In applying the model to this problem the procedure established above is repeated.
Constitutive relations for the fiber under the rod theory approximation are still given by
(1) and (2) and the bonding tractions along thc fiber, with their equivalent matrix stresses,
are denoted in the same way. The rod is in equilibrium if, for all z 2 0,

xa:a+2naj-rd:’=F. an

0

In what follows, (2) and (17) are taken to be the governing equations and &, €., and g, are
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Fig. 5. Semi-infinite cylindrical fiber embedded in a semi-infinite elastic matrix.

once again the fiber quantities which need to be related to the approximate elastic field in
the matrix described below.

The approximate elastic ficld due to a concentrated force F acting at the origin in the
negative s-direction along with distributions along the positive z-axis of point forces and
point dilatations, p(z) and ¢(z) respectively, can be expressed using the Mindlin solution
for a concentrated load in a semi-infinite elastic half-space (Mindlin, 1953), along with that
for a point dilatation (Sokolnikoff, 1956), as

A o I ) < 2((:+C)_ _{:4_!'72‘ o i P v
e = g {p-‘(r.:+c> o R (LT
e =+ o s
*) o
I I R (R L) e
4)("-) = 871'(' —V,,,) 0 {p(r’:_*_g) _4(l —V,,,)(l _2‘m)lob[-+g +/)(I',-+(,)]
C } e v l JL{ 3—4\’," l } P -
—2 —MFS &-—1 {=
T+ POId - | s ) 4

(18)

where it is recalled that p(r,z) = /r*+z°. The distributions have the same magnitude as
before. Using these stress functions results in matrix field variables of the form

& (r.2) =L {B\(r, 2, O[F6() +p(O] + B:(r, 2,0)q({) } AC. (19)

While the kernels B, and B, are not difference kernels they are still real analytic functions
of z and { for r > 0 and so, consequently, is €.

The fiber-matrix relations for ¢, and o, that were established in (8) and (9) are still
valid as is that for axial strain, ¢, that was established in (10) to be used in eqn (2). Care is
used in choosing an expression for ¢, to be used in (17). Consider a unit concentrated axial
load at (0, ). It follows from fiber equilibrium and (1) that there must be a jump in axial
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strain. Ae? = | na’ E,, across the load. Recall that a superscribed asterisk denotes a quantity
due to a unit concentrated axial load. The expression given in (12) satisfies this condition,
but following the asymmetric nature of the problem the effective axial strain in the matrix
was instead taken to be

g = ! H(:-C)|:1-—erf(:—;;E)]+E:"“(G‘Z~C) (20)

N :m:Ef

where H(:) is the Heaviside step function. Comparison with other results in the literature
shows (20) to be an acceptable choice.

Using the expressions established above to relate the unknown fiber quantities to the
elastic field given by (18). and non-dimensionalizing with a and F, the governing equations
(1) and (17) can be written as a pair of coupled integral equations in terms of the unknown
distributions p(z) and ¢(2):

.

j(,* p() (11~§+J0 M Op(0 + 12 0q(D]dl = —11,,(2.0) e2))

L 21z D p(Q) + 225, Dg(D]dS = —T11,(=.0) (22)

where the kernel functions Tl (2, f = 1, 2) are real analytic functions (see the Appendix).
These equations are solved for discrete values of the distributions in the same way as before
except that the limits of integration arc already semi-infinite. Note that, as previously
alluded to, (21) and (22) do not have difference kernels and could not, therefore, be solved
using transform methods.

Axial load in the fiber is determined by egqn (1) [or cquivalently eqn (17)]. Rewriting
(1) in non-dimensional form with the now known distributions p(z) and ¢(z) gives

‘,";5), =X,(z0)+ L B 0P+ DqD)]dg @3)

l)

where oy = F/rna®, £,(z.{) is discontinuous at = = {, and I, is a real analytic function (see
the Appendix). Results from (23) are compared with those from Muki and Sternberg's
model (1970) and shown in Fig. 6.

4. CONCLUDING REMARKS

Comparison with an exact solution for the three-dimensional analog of Melan’s first
problem (Muki and Sternberg, 1969) shows that the fiber load-diffusion model gives good
results for both axial load in the fiber and tangential tractions on the fiber~matrix interface
at distances from the applied load greater than approximately one fiber radius. The dis-
continuous nature of the normal interface tractions, however, is not adequately accounted
for. To demonstrate the model's application to fiber load-diffusion problems involving half-
spaces the three-dimensional analog to Reissner’s problem was examined. The results were
compared to those from Muki and Sternberg’s approximation (1970) and found to be in
agreement.

It is hoped that the model will prove useful in the study of other more complex fiber-
matrix systems which more closely resemble those observed in actual fiber-reinforced
materials. In particular it is anticipated that the model will be useful in studying systems
with prescribed interface conditions other than ideal bonding. Presently problems involving
fiber debonding, frictional sliding, etc. are handled with evident success by a somewhat
crude “shear lag™ model (Hutchinson and Jensen, 1990). Perhaps with some further devel-
opment the present model can be used to validate the far simpler shear lag model.
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Fig. 6. Load-diffusion results in the three-dimensional analog of Reissner’s problem for the model
presented in this paper and Muki and Sternberg’s approximate solution.
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APPENDIX
Listed below are those matrix quantitics that are needed for the implementation of the model in this paper.

They are given in terms of the Papkovich stress functions which in turn are given, in terms of the unknown
distributions p(z) and ¢(z). by eqn (6) for the full-space problem and eqn (18) for the half-space problem:

| l+v, d . .
-r-l/"(r.-)= E g;(f'ﬁ(r.-)ﬁ'lﬁ(’--)] (Al)
l '~ a2 7 a2
&(r.z) = ;V [:é_—:w(r.:)‘—Z(l-—2v,,,)%:lﬁ(r.:)+ ‘,i_—_,¢(r,.-)] (A2)

2 2
or(rz) = (%[:W(r. D+ -2v., {f7£¢(r, 2 (A3)



Load-transfer from an embedded fiber to an elastic matrix 1051
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() A = =Y () + (R -2(1-v,) | w(r ) d (Ad)
] Cr o O

Note that, as stated in the text, each of these quantities is a real analytic function of = for r > 0.

The three-dimensional analog of the Melan problem

The kernel functions for the pair of coupled integral equations (13) and (14) are arrived at by substituting
(A1)-(A3) [with y and ¢ given by (6)] into the governing equations (2) and (3) using the fiber-matrix relations
established in the body of the paper. To non-dimensionalize with a and F the following substitutions are made:
s—az {—al p,~ap, 6() ~ (/a)o(0). p() — (Fla)p({). and ¢({) — Fq(J). Letting p. = \/1+:7, the kernel
functions are

L) = —erf () + — +a,—5 +2;—5 AS

n( &) 2 “1&, zp,’ (AS5)
i 1

Fa@) =2 5+ai— (A6)
p: P:
4 z

[0 =¢sE +¢.;:,‘ (A7)

() =a ! +a ! (A8)
A AP,

where

L+, (1-2v,)

E
ay =(|+V..)E:;— Ai—v.) (A9)
E
ay = z'(T’iT‘)[V" ja +v,,)E_L] (A10)
a,-l+v,—(l+v,,)—£l (Al
En
a, = 3(1 +v..)§i -3y, (A12)
{ E, (1=2v)(I+v ) (1 =2v))
a,=(l+v,)[m—2v,]£—~- 2 =v.) (Al3)
Iv, (1+v NE,  3(1=2v))(1 +v))
% = T(l—v,)f: 21 -v,) (Al4)
E,
ay = (l-~2v,) l+v,-(l+v,,)E— (ALS)
£
@y = =3y, (1 +va) 2 ~ 31 =201 +v)). (A16)
The kernel functions in the expression for axial load in the fiber (15) are
z z
Ay(2) = sgn(2) —erl (:)+ﬂ.;+ﬂz‘7 (Al7)
M) = By +Bu (A18)
1) = s+Bals
where
E, v(1-2v,)
ﬂ|=(l+V.)E—"*'2—(lW (A19)
3 E,
Br=a;= m[‘?- (1+v,) E‘f] (A20)

By= v,—(l+v..)§£ (A21)
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ﬂ‘=z‘=§(t+v,);__i—3v,. (A22)

The three-dimensional analog of Reissner’s problem

The kernel functions for the pair of coupled integral equations (21) and (22) are arrived at by substituting
(A1)-(A4) [with ¢ and ¢ given by (18)] into the governing equations (2} and (17) using the fiber-matrix relations
established in the body of the paper. The same substutitions are made to non-dimensionalize with g and F. The
kernel functions are

l+v,\ £ 1

=) = o Hirwl o)+ L bl Yo/ .
M) = —Hie=erf (2~ + s(l _v")Emnl(nS)"' 4(‘ Q 22D+ = Q,(=.0) (A23)

- 1, EI " v - I -
[h.62.0) = J(L+v,) E“QJ(:H,)"' “.;‘05(:~&)* :2(2.9) (A24)

L+, (L+v, )1 =2v)) L+va\E
= *—(l — )E,..Q (z.{)— 8w Q.=+ ( VM)E,..Q?(-'O (A25)
oV E Y - E, -

M) = 3“(1 +¥,) E—ﬁ;(:.s)—- W+v 1 =2900,:.0+ 101 +V,..)E—Qu(3-s) (A26)

where Q(:.0) ( = 1.....8) are continuous, analytic functions given below. Letting p = \/H—(:-—{)‘ and
p=J1++04

Q=0 = -m:q +Q I —dv, —4+ )+ 62 4(|-4v +20))G+0) +4:
b S oy Y
i’ o &

=) 4l -v M z-{
IRl T Cl (R
P P

WLEAD 6D+ 12 =9G =D 6= (1 =2)B-ar)+0)  3:=D)

i

‘l:(:.;)

‘;,' ﬁi‘ ﬂ.\ f’ﬂ
(I--v,.)(-— ( +{)'+{2+p
— +4(1 =v,)(1 -2v,.) Y tri A28
o (=val +{+p)p’ (A2
—»6'&,( +C) (3 4\: )..+\, 2= 2l =v,) 2(|
,(2,0) = e e T e e A -y, A29)
Ll P 7 ot G+ C+p)p l=va) (
. - 30z (-+g) (4 ~3+12v, 2-8v, 3 2
Q) = — ‘}; + - 7 + 7 + ;; - ;; (A30)
L 30z40) 62(=4+0)+9 3+4v, 31
Q0 = ﬁ’ - ﬁﬁ + ’;3 - ;; + F {A31)
-6z(z4+0) I 1
Q=0 = ”*—(,——:l —Zit s (A32)
[ Ao
~6:5(z+{) (3—dv, )= == 4l—v, N I=2v,)
) = _ A B L 1A . 1 A33
Q=0 a 5 P C+{+p)p (A3%)
—O2(z 4 -y, I
e = TEERD 3L "
Iy I 4
The kernel functions in the expression for axial load in the fiber (23) are
. . H“’ E,
22y = H( =l —erf (2~ C)l+ =GO+ Qz(—~0 (A35)
~v./E., 4(!
. E, “wa Y .
L) = il +v,) EQ'(:"’)+ 5 Qs(2.0) (A36)

where Q.(2.5) (7 = [, 2.4, 5) arc as defined above.



